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NUMERICAL SOLUTION OF AN INVERSE PROBLEM IN NONSTATIONARY MASS TRANSFER 

IN A MULTICOMPONENT MIXTURE 

A. A. Antonyuk, R. M. Marutovskii, UDC 66.016.33:541,183:519.,6 
and N. N. Redkovskli 

Discrepancy-functional minimization is used to show that there is considerable in- 
teraction between adsorbed components during transport in a porous material. 

A major problem in the theory of heat and mass transfer concerns methods of solving in- 
verse problems, which have been classified in [1-3]; one needs numerical values for the kin- 
etic coefficients to simulate and optimize mass-transfer equipment, To determine these for 
mixtures, it is necessary to solve for kinetlc-parameter matrices 14]. One measures the con- 
centrations averaged over the volumes of the porous particles, which are dependent on run 
time (kinetic curves) when one examines nonstationary transfer in sorbents and catalysts. 
An inverse problem in mass transfer for a binary mixture can [5] be handled by determining 
the elements in the coefficient matrix by using sections of the kinetic curves. Here we con- 
sider a method of solving for nonstationary mass transfer for an n-component mixture, which 
is based on minimizing the discrepancy functional, where it is shown that there is a consid- 
erable interaction between the components within the material, 

The mass flux densities are put as [6] 

j =_Dva (I) 

We consider the simplest case of boundary conditions of the first kind. The equations 
for nonstationary mass transfer for an n-component mixture subject to constant values for the 
elements of matrix D may be written as 
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Oa x=O a (x, O) ~ o, -~x  = O, a (R, t) = ao. 

The solution to (2)  for the means over the volumes of 
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i s  

a ( t ) -  r + l  R 
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a 2 ~ exp (-- mZ~2D0 a o. (3) 
n2= i 

It follows from (3) that the concentration vector ~ is a function of D; solving the in- 
verse problem amounts to determining D from the experimental a--ex(t). From (3) we get a quad- 
ratic function of the discrepancies: 

q 

[ (D) = ~ Ila(6) - -  a-ex (6)11 z. (4)  
i = l  

The elements of D are deri~ed by minimizing f(D); D should have eigenvalues with positive 
real parts, since otherwise the matrix series in (3) will diverge and the solution for ~(t) 
will not be bounded. This requirement is met if D is posltive-definite [7], 

Nonlinear programming cannot be used here in the minimization, as this requires con- 
straints to be formulated in the form g(Dij) < 0 (g is a function of the elements of D), It 
is virtually impossible to pass from the cond~tlon of positive definiteness to constraints of 
that type for problems of dimensions n > 3. 

To minimize the functional for positive-definlte D, one needs special numerical methods 
that incorporate the detailed features, one of which is as follows. 

Any matrix D can be uniquely represented as the sum of a symmetrical matrix D and an 
oblique-symmetrlc one D O [7]: D = D + Do, where D s = (D + D*)/2, D O = (D -- D*)/2~ Then D 
will be positive-definlte if and onl~ if D s is so, 

Then one minimizes f on the set of posltive-deflnite D [8] in the following steps: 

i) for certain z from the Euclidean space E N (N = (n -- l)(n -- 2)/2) and lEE n-l one 
constructs a mapping Ds(Z , %)such as to take values on the set of symmetrical positive- 
definlte matrlces, where for any matrix D~ one also finds z ~ and ~o such that Ds(Z ~ X ~ = D~; 

2) for xEE N , one constructs a mapping Do(X ) that takes values on the set of oblique- 
symmetKic matrices; and 

3) methods of unconditional minimization with respect to the variables z, X, and x are 
applied to f[Ds(Z , X) + Do(X)]. 

Let r > 0 and A be a diagonal matrlx having elements r + X~ (i = i, 2, ..., n -- i) that 
are components of the vector X6E n-~ . A method has been described [8] by means of which any 
N-dimensional vector z is put into correspondence with an orthogonal matrix U(z). We put 
Ds(Z, X) = U*(z)AU(z). 

We locate the elements of the N-dimenslonal vector x at points under the principal diag- 
onal of D O and these elements with minus signs above the principal diagonal to get a parame- 
tric representation of theset of obllque-symmetric matrices Do(X) with zero principal diagon- 
al. 

Then f(D) takes the form 

[ (m) = [ [U* (z) AU (z) + D O (x)l, 

and the minlmSzation is performed in the space of variables (z, X, x) of dimensions (n -- i) ~, 
where no constraints are imposed on the variables. 
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Fig. i. Dependence of a (mole/kg) on time t (h) for adsorption 
of a mixture of isobutanol (I) and dimethylacetamide (2) from 
aqueous solution on particles of active anthracite (ao~ = 
0.21, ao= = 0.60 mole/kg). 

This prob!em may be ill-posed [9, !0] in the sense that there may be several different 
points (z,, l,, x,) at which the function attains a minimum when small changes are made in 
the initial data; Tikhonov's regularization method can be applied, which involves minimiza- 
tion with a certain accuracy c k at each step for the function Tk(Z, l, x) = f[D(z, l, x)] + 
ek~(Z, l, x), ~k > 0, where ~(z, l, x) = IIz -- zoll 2 + Ill - loll 2 + fix -xoll 2, the matching of 
the parameters k and k' which tend to zero, has been described in [i0]. Then any sequence 
(z~, Ik, xk) will have limiting points most remote from (zo, Io, xo) among all the (z,, l,, 
x,~ on whi~ f attains a minimum, which provides a stable determination of the solution (z,, 
l,, x,). 

This approach is readily extended to the case where the function is dependent on two 
positive-deflnite matrices. This minimization method can also be used to solve other inverse 
problems in nonstationary mass transfer. 

The method has been implemented on calculating the elements of the diffusion-coefficlent 
matrix for a solid phase in the adsorption of a mixture of isobutanol (first component) and 
dimethylacetamide (second component) from aqueous solution onto activated anthracite having 
an equivalent radius for spherical particles of 0.282.10 -3 m. The calculations gave the fol- 
lowing elements for matrix D: D,I = 1.613.10 -:= , D,2 = 0.490.10 -.2, Dz, = 4.132.10 -*2 , D=2 = 
3.31Z.I0 -:2 m=/sec. The diffusion-coefficient matrix has simple positive eigenvalues for these 
Dij, and the transport within the solid in the adsorbed state causes an increase in entropy. 
These D+~ have been used with (3) to calculate the kinetic curves. The good match to experi- 
ment (F~. i) indicates that the Dij can be determined in this way with an acceptable accur- 
acy. The calculations show that small changes in~i(t) (within the experimental error) do 
not give rise to substantially differing elements for D in the case n ~ 3, 

These Di~ show that kinetic interaction on transport within a solid is quite pronounced, 
since the cro~s diffusion coefficients are of the same order as the principal ones, which must 
be borne in mind in models for sorption kinetics and dynamics for multicomponent mixtures in- 
volving mass transfer by diffusion, 

NOTATION 

j, mass flow density vector; D, square (n-- i) • (n -- i) matrix for diffusion in solid 
phase; n, number of components; a, component-concentration vector; x, coordinate; F, constant: 
for an infinite plate F = 0, infinite cylinder, F = i, for a sphere F = 2; ao, equilibrium- 
concentration vector; R, radius or half of plate thickness; I, unit matrix; q, number of measure- 
ments; D*, transposed matrix D of dimensions (n -- I) • (n -- i); A, diagonal matrix; U~ orthog- 
onal (n -- I) x (n -- I) matrix. 
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THERMOELASTIC DEFORMATION OF A COOLED METAL PLATE UNDER THE INFLUENCE 

OF A PULSE-PERIODIC RADIATION FLUX 

G. I. Rudin UDC 539.3:621.375.826 

A solution to the problem of determining the fields of stress and deformation in 
a plate under the influence of radiation flux with a Gausslan distribution is ob- 
tained. 

A common element in optical systems is a metal plate, the surface of which has a high 
coefficient of reflection as a result of processing. Under the influence of a sufficiently 
high radiation flux density on the plate, the planar reflecting surface buckles due to non- 
uniform heating. This leads to a change in the structure of the beam; in particular, defo- 
cusing occurs as a result of reflection from such a surface [i]. In addition, thermal stress 
develops in the plate. During intense heating the magnitude of this stress can exceed the 
tensile strength of the plate material, thereby inducing an irreversible structural change. 

In [2] a calculation of the thermal stress in a cooled plate under the influence of a 
pulse-periodlc radiation flux was performed within a one-dimensional approximation where the 
stress tensor components and temperature change in the direction normal to the surface of the 
plate. In [3] a relation for the temperature fields in a plate was obtained within the one- 
dimensional approximation, and an estimation of the normal deformation and stress was per- 
formed. In [4] the two-dimensional problem of stress location in a free round plate under a 
radially Gaussian distributed radiation flux density was determined. It was shown that the 
structure of the spatial distribution of the stress within the one- and two-dimensional cases 
differs significantly. In particular, it was found that in the center zone of irradiation, 
the tangential and axial components of the stress are compressing, but out of the zone of 
irradiation they are stretching. 

In the present work, in contrast to [4], the primary emphasis is the deformation of the 
plate surface induced by the thermal effect of a pulse-perlodlc radiation flux with a radial 
Gau~sian distribution. We will assume that the rear surface of the plate is fixed to a rigid 
base, and the heat transfer from it proceeds according to Newton's law. 

We will find the temperature field of a plate of constant thickness d and infinite in 
the radial direction. One of the surfaces of the plate (z = 0) is heated as a result of the 
influence of the pulse-periodic source (radiation directed along the normal to the surface), 
and the other (z = d) is cooled by means of a cooling agent with a coefficient of heat trans- 
fer h. We will assume that the intensity of the surface thermal source can be represented in 
the form 
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